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SLR Assessment II:  Precision/Inference 

1. You may recall that when we initially considered the topic of SLR Assessment, we started 
with: 

After we have derived the OLS parameter estimates, 0β̂  and 1̂β , the question always 
arises:  How well did we do?  How close are the estimated coefficients to the true 
parameters, 0β  and 1β ?  We'll have several answers.  None will be entirely 
satisfactory… though they will be informative, nonetheless.  

2. We then discussed two approaches to SLR Assessment: 

a. Goodness-of-Fit metrics (MSE/RMSE and 2R ), which measured the extent to which our 
model explained the variation in the dependent variable, and 

b. Precision/Inference metrics, which measured the precision with which we had estimated 
the unknown parameter values, 0β  and 1β . 

3. At that time there was extensive discussion of Goodness-of-Fit metrics (SLR Assessment 
I)….  but we totally punted on precision/inference, saying:   

Later on, we will have lots to say about precision of estimation… but that discussion 
awaits the development of the tools of inference, including Confidence Intervals and 
Hypothesis Tests. 
While those inferential tools won’t with certainty answer the question How Close?, they 
will give us probabilistic assessments as to how close our estimated coefficients are to the 
true unknown parameter values:  levels of confidence for confidence intervals and 
significance levels for hypothesis testing. 

4. Well that time has arrived!  We will shortly consider precision/inference in the context of 
SLR models.  But first, it is useful to review the case of the Sample Mean estimator. 
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Sample Means and Inference: Conceptual Review 

5. Recall from the Review of Inference and the case of estimating the mean of the distribution: 

a. Under certain assumptions (including homoskedasticity) we found that the Sample Mean 
was a BLUE estimator of the unknown mean. 

b. To create confidence intervals or do hypothesis testing, we had to make an additional 
assumption about the distribution of the population.  We assumed a Normal distribution. 

c. Under those assumptions: 

i. Confidence intervals were the Sample Mean plus or minus c Standard Errors, where 
the critical value c came from the t distribution with n-1 degrees of freedom. 

ii. We rejected the Null hypothesis ( 0 : 0H µ = ) at some significance level α only if the 
reported p value was less than α   … or if the t stat was larger in magnitude than the 
critical value. 

6. These results carry over to the SLR models, virtually unchanged … just replace ( 1)n −  with 
( 2)n − . 

 
Onwards to SLR Inference 

7. Recall the five SLR assumptions: 

a. SLR.1 – Linear model (the true model/DGM is in fact linear):  0 1Y X Uβ β= + +   

b. SLR.2 – Random sampling:  the sample { }( , )i ix y is a random sample 

c. SLR.3 – Sample variation in the independent variable:  the 'ix s  are not all the same 

d. SLR.4 – Zero conditional mean of the error term:  ( | ) 0E U X x= =  for all x 

e. SLR.5 – Homoskedasticity (constant conditional variance of the error term):  
2( | )Var U X x σ= =  for all x 

8. Previously we showed: 

a. LUEs.  Given SLR.1 – SLR.4, the OLS estimators are linear unbiased estimators of the 
true parameters of the DGM, 0β  and 1β , so that ( )0 0E B β=  and ( )1 1E B β= , where: 

i. 1 2 2

( )( ) ( )
( ) ( )
i i i iXY

j XX j

X X Y Y X X YSB
X X S X X
− − −

= = =
− −

∑ ∑
∑ ∑

 and, 

ii. 0 1B Y B X= − . 
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b. MSE and BLUE.  Adding in SLR.5 we have: 

i. 2ˆ
2

SSRMSE
n

σ = =
−

 is an unbiased estimator of 2σ  , the conditional variance of U,  

ii. 2( )i

MSE
x x−∑

 is an unbiased estimator of 1( )Var B , and most importantly,  

iii. OLS estimators are BLUE estimators (the Best Linear Unbiased Estimators of 0β  and 

1β ).  This last result is the Gauss-Markov Theorem. 

 
… SLR.6: U has a Normal Distribution 

9. To create confidence intervals for the estimated parameters, or do hypothesis tests, we need 
to make one additional assumption (as we did previously for inference with the sample mean 
estimator above): 

a. SLR.6 – Normality:  U is independent of the RHS variable X and is Normally distributed 
with mean 0 and variance 2σ . 

i. Note that SLR.6 requires more than SLR.4 
(U has conditional mean 0) and SLR.5 
(homoskedasticity)… since it now 
specifies the actual distribution of U, not 
just its mean and variance. 

ii. This may or may not be a good 
assumption… but it does simplify 
computations! 

b. Recall that the Population Regression 
Function (PRF) is defined by: 0 1( | )E Y X x xβ β= = +  .  SLR.6 implies that we know the 
actual the conditional distribution of Y (given X x= ):   

( )2
0 1| ,Y X x Normal xβ β σ= +  

 
Distribution of the OLS Estimators (given SLR.1-SLR.6) 

10. Given SLR.1-SLR.6, and conditional on the sample values of the x’s, the OLS estimators 
will be Normally distributed: 

( )1 1 1, ( )B Normal Var Bβ , where 
2

1 2( )
( )i

Var B
x x
σ

=
−∑

 as before. 

a. We’ll skip the proof, but it follows from the fact that sums of independent normally 
distributed random variables are themselves normally distributed. 
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b. And as we did with the Sample Mean estimator, we can standardize 1B  , so that: 

( )1 1

1

0,1
( )

B
Normal

sd B
β−
 ,  

where the standard deviation of 1B  is 1 2
( )

( )i

sd B
x x
σ

=
−∑

. 

c. Since 2σ is unknown, we don’t know 1( )sd B .  But as with the Sample Mean, we can use 
the standard error of 1B , 1( )se B  to estimate 1( )sd B . 

d. Given SLR.1-SLR.5, MSE is an unbiased estimator can estimate 2σ , and 2( )i

MSE
x x−∑

 is 

an unbiased estimator of 1( )Var B  (conditional on the x's). 

 
… Standard Errors and t Stats 

Standard Errors 
11. Standard errors (se's) provide us with a measure 

of precision in the estimation of the unknown 
parameters.  Knowing the se alone however is 
typically not very helpful, since it is often 
difficult to know whether a particular standard 
error is small or large.  As with the Sample Mean 
estimator, we will circumvent this shortcoming 
by focusing on t stats, which effectively 
standardize the standard error, and gives us a 
metric that is more readily interpretable.   

12. Recall that the standard error of 1B , 1( )se B , 

provides an estimate of 1( )sd B , is defined by:
2

1 2

ˆ
( )

( )i

se B
x x
σ

=
−∑

 

2 2( ) ( 1)( )i xi

MSE RMSE RMSE
x x S nx x

= = =
− −−∑ ∑

. 

This is the Std. Err. that is reported in the SLR regression results. 

13. Perhaps not surprisingly, the standard error is: 

a. increasing in RMSE (reported standard errors will be smaller with models that do a better 
job of fitting the data), 

b. decreasing in n (more observations will lead to smaller reported standard errors), and 

c. decreasing in the variance of x (this is perhaps less intuitive, but increased variance in 
your RHS variable is a good thing and will lead to a smaller reported standard errors). 
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t-Stats 

14. Comparing the standard error to the estimated coefficient, 1̂β , often tells us something about 
how reliably we've estimated the unknown slope parameter, 1β .  Before assessing reliability, 
though, we'll need to define one more term, the t stat:   

1

1

1
ˆ

ˆ

ˆ
t

seβ
β

β
=  .   

15. The absolute value of t stat tells you the magnitude of the estimated slope coefficient, 1̂β , 
measured in units of standard errors.  Once you know the t stat, you can apply some general 
rules of thumb to assess precision of estimation. 

16. We'll be more precise below, but in general, the larger the t stat, the greater the likely 
precision (as you'll see later, n also matters in assessing precision)... so you should take 
comfort seeing high t stats, and fret over low ones.  In terms of ranges and emotions, and 
assuming a sizable n: 

a. if 2t >  or so…  then you have likely done a 
pretty good job of estimating the unknown slope 
parameter, 1β , 

b. if 1t <  ish … then you have likely done a not so good job of estimating 1β ,  

c. and for in-between magnitudes of t…  while the results aren't as strong as you might like, 
there's hope and reason to believe that with further work your model will be something to 
brag about.  So definitely no reason to lose hope! 

 
t Statistics and Inference 

17. Under the SLR.1 - SLR.6, the t statistic 1 1

1( )
B
se B

β−
  will have a t distribution with n-2 degrees 

of freedom.  Sometimes we write this as:  
1 1

2
1( ) n

B
t

se B
β

−

−
 .   

a. This looks very similar to what we saw 
in the sample mean example, except in 
that case, we had the t distribution with 
n-1 degrees of freedom. 

b. Knowing the distribution of 1 1

1( )
B
se B

β−
 

enables us to develop confidence intervals for 1β  and test hypotheses about 1β . 

c. And remember, as with the Sample Mean,  the t statistic is the cornerstone of inference. 
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… Confidence Intervals 

18. Since 1 1
2

1( ) n
B

t
se B

β
−

−
  , the interval estimator [ ]1 1 1 1( ), ( )B c se B B c se B− ⋅ + ⋅  will form, say, a 

95% confidence interval for 1β  if c is defined by: ( )2 .95nP t c− ≤ = .  (where 2nt −  has a t 
distribution with (n-2) degrees of freedom). 

a. Notice that the confidence interval is centered around 1B , which will vary with the 
sample.  Additionally, although c is fixed, the width of the interval, 12 ( )c se B⋅ , will also 
vary with the sample, since 1( )se B  varies with the drawn sample. 

b. Many regression packages automatically report (95%?) confidence intervals for the 
different parameters. 

 
… Hypothesis Testing  

19. Testing 0 1: 0H β = :  This is far and away the most common hypothesis test in econometrics.  
If the true slope parameter is 0 then changes in Y do not in general relate to changes in X, 
and so any apparent covariance is being driven solely by noise (U). 

a. From above, we know that the t statistic, 1 1

1( )
B
se B

β−
, has a t distribution with n-2 dofs. 

b. Under the Null hypothesis, 0 1: 0H β = , the t statistic (or t stat), 1 1

1 1

0
( ) ( )

B Bt stat
se B se B

−
= = . 

i. t stats (assuming 0 1: 0H β = ) are normally reported in regression output (as are 
parameter estimates and standard errors).  They can be positive or negative, and will 
have the same sign as the 1̂β  since standard errors are always positive. 

c. To conduct the test at the 5% significance 
level, determine the critical value c defined 
by:  2( ) .05nP t c− > =  . 

i. As before, unless n-2 is fairly small, this 
critical value will typically be about 2. 

ii. Critical Region:  Reject 0 1: 0H β =  if 

1

1

ˆ
ˆ( )

t stat c
se
β
β

= >  (so the t statistic 

value is larger in magnitude than c). 

iii. If we reject  we reject the null hypothesis, we say that the coefficient is statistically 
significant at the 5% level.   

iv. If we cannot reject the null hypothesis, we say that the coefficient is not statistically 
significant at the 5% level… or that it’s statistically insignificant at that level. 
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… p values and Statistical Significance 

20. As before, the p value is the smallest significance level at which 
the null hypothesis can be rejected:   

p value = ( )2nP t t stat− > , where 2nt −  is a random variable 
with a t distribution (n-2) degrees of freedom, and 

1

1

ˆ
ˆ( )

t stat
se
β
β

=  for the given sample.   (This is just the 

probability in the tails outside tstat± .) 

a. As in the case of the inference and the Sample Mean, you can reject the Null Hypothesis 
at all significance levels above the p value, but not at significance levels below the p 
value.  Small p values are evidence against the null hypothesis; large values not so much. 

21. So, for significance level α , we Reject the Null Hypothesis, 0 1: 0H β = , if: 

a. The t stat is larger in magnitude than the critical value:  
t stat c> , where the critical value c is defined by , 2( )nP t c α− > = , 

or if 

b. The p-value is smaller than the significance level:  
( )2nP t t stat p α− > = <  

c. And yes, all of this is virtually identical to what we saw 
with the Sample Mean.  
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SLR Assessment Metrics Converge:  t Stats and R2 

22. There's a connection between the measure of precision, 
1̂

t
β

, and the 2R measure of goodness 

of fit, as well as SSE and SSR:   

1

2
2
ˆ 2( 2) ( 2)

1
R SSEt n n

R SSRβ
= − = −

−
. 

Who knew?  …Goodness-of-Fit and Precision/Inference metrics are connected in SLR models! 

23. These equations make it clear that precision in estimation is a function of both 2R , how well 
the model fits the data, as well and the number of observations, n.  It may not be so obvious, 
but this expression is increasing in n and 2R .  And so ideally, both n and 2R  are large.  

24. Importance of 2n and R :  If you have high 2R  but low n, or high n (lots of observations) but 
poor fit (low 2R ), then it's likely that your slope estimate is not so precise.  But a healthy 2R  
together with lots of observations means that that you have likely done a nice job estimating 
the unknown parameter, 1β .  So: 

a. low n and low 2R :  bad news… get back to work! 

b. (low n and high 2R ) or (high n and low 2R )…  still not so great! 

c. high n and high 2R :  well done! 

25. Note that since SSE SSR SST+ =  , the t stat will depend on how the SSTs are divided 

between SSEs and SSRs, since 
1

2
ˆt
β

 will be proportional to SSE
SSR

, for given n.  The higher the 

SSE/SSR  ratio, the greater the magnitude of the t stat. 
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Example:  Bodyfat 
26. Here's an example using the bodyfat dataset. 
 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 
-------------+--------------------------------------------------------- 
      Brozek |        252    18.93849    7.750856          0       45.1 
         hgt |        252    70.14881    3.662856       29.5      77.75 
 
. corr Brozek hgt 
 
             |   Brozek      hgt 
-------------+------------------ 
      Brozek |   1.0000 
         hgt |  -0.0891   1.0000 
 
. corr Brozek hgt, covar 
 
             |   Brozek      hgt 
-------------+------------------ 
      Brozek |  60.0758 
         hgt | -2.52975  13.4165 
 
. reg Brozek hgt 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =      2.00 
       Model |  119.726679         1  119.726679   Prob > F        =    0.1585 
    Residual |  14959.2899       250  59.8371598   R-squared       =    0.0079 
-------------+----------------------------------   Adj R-squared   =    0.0040 
       Total |  15079.0166       251  60.0757635   Root MSE        =    7.7354 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         hgt |  -.1885553   .1332996    -1.41   0.158    -.4510886     .073978 
       _cons |   32.16542   9.363495     3.44   0.001     13.72403    50.60681 
------------------------------------------------------------------------------ 
 

a.  1 .18855ˆ 53. xy y
xy

xx x

S S
Coef

S S
β ρ= = = = −  

b.  1 2
ˆ. . ( )

1
.1332 6

(
99  

) xi

RMSE RMSEStd Err se
S nx x

β= = = =
−−∑

 

c.  1

1

ˆ .
ˆ . .( )

  1.41Coeft
Std Errse

β
β

= = −=  

d.  ( )250 0.15| | ( ) : 8P t p value P t t stat> > =  

e.  [95% Conf. Interval]: [ ] .4510886 , .07397. . . [ 8]Coef c Std Err −± ⋅ =  where 

( )250 .95P t c≤ =  

f. The hgt coefficient is statistically significant at the 15.9% level, but not at the 15% level, 
or any smaller level of statistical significance. 
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g. Connecting t stats and R2:  The reported t stat for the hgt variable is -1.41.  Applying the 
formulas above, we have:   

i. 
1

2
2
ˆ 2

.0079( 2) 250 1.99
1 .9921

Rt n
Rβ

= − = =
−

… and so
1̂

1.99 1.41t
β
= =  

ii. 
1

2
ˆ

119.727( 2) 250 2.00
14,959

SSEt n
SSRβ

= − = = … and so
1̂

2.00 1.41t
β
= =  

 

 
Appendix 

27. Proof of the relationship between Goodness-of-Fit and precision/Inference metrics: 

1

2
2
ˆ 2( 2)

1
Rt n

Rβ
= −

−
 

a. By definition, 
1

1

2 2 2 22
1 12 1

ˆ 2
ˆ

ˆ ˆˆ ( ) ( )
/ ( 2)

i ix x x x
t

se MSE SSR nβ
β

β ββ − −
= = =

−
∑ ∑ .   

b. We know from the proof of 2 2
xy Rρ = that 2 2

1̂ ( )iSSE x xβ= −∑ .   

c. And so 
1

2
2
ˆ 2

/( 2) ( 2) ( 2)
/ 1

SSE SSE SST Rt n n n
SSR SSR SST Rβ

= − = − = −
−

. 


